TY - JOUR
T1 - An in depth evaluation of matrix, external upstream and downstream recycles on a double pass flat plate solar air heater efficacy
AU - Ahmadkhani, Ali
AU - Sadeghi, Gholamabbas
AU - Safarzadeh, Habibollah
N1 - Elsevier deal
PY - 2021/3/1
Y1 - 2021/3/1
N2 - In the present study, the thermal and thermohydraulic characteristics of different types of double pass solar air heaters (DPSAHs) containing three flow channels were analytically investigated. The analyses were conducted at air mass flow rates of 0.01, 0.015, 0.025 kg/s and different reflux ratios of 0.1 to 1. The effects of upstream and downstream recycling patterns were analyzed. Moreover, the impacts of matrix placed between the absorber plate and the second glass cover with various porosities, and variation of solar radiation intensity on the DPSAH performance were examined. Furthermore, the pressure drop due to the existence of matrix was considered to obtain more realistic outcomes. The results demonstrated that as to the downward recycling pattern, using matrix leads to an increase in the DPSAH thermal efficiency presenting the thermal efficiency of 79%; however, it brings about a reduction in its thermohydraulic efficiency at high mass flow rates and reflux ratios and high fan power cost is incurred, subsequently. The most compelling result is: if we consider an upstream recycling pattern, it is true that we have overlooked a certain amount of the DPSAH efficiency compared to a matrix-based downward recycling DPSAH (about 7% less efficiency); however, at high mass flow rates and reflux ratios the thermal efficiency of DPSAH is similar to that of a matrix-based upward recycling DPSAH, and in this way, not only the hot air demand is supplied, also the extra fan power cost and the cost of providing a suitable matrix are eliminated.
AB - In the present study, the thermal and thermohydraulic characteristics of different types of double pass solar air heaters (DPSAHs) containing three flow channels were analytically investigated. The analyses were conducted at air mass flow rates of 0.01, 0.015, 0.025 kg/s and different reflux ratios of 0.1 to 1. The effects of upstream and downstream recycling patterns were analyzed. Moreover, the impacts of matrix placed between the absorber plate and the second glass cover with various porosities, and variation of solar radiation intensity on the DPSAH performance were examined. Furthermore, the pressure drop due to the existence of matrix was considered to obtain more realistic outcomes. The results demonstrated that as to the downward recycling pattern, using matrix leads to an increase in the DPSAH thermal efficiency presenting the thermal efficiency of 79%; however, it brings about a reduction in its thermohydraulic efficiency at high mass flow rates and reflux ratios and high fan power cost is incurred, subsequently. The most compelling result is: if we consider an upstream recycling pattern, it is true that we have overlooked a certain amount of the DPSAH efficiency compared to a matrix-based downward recycling DPSAH (about 7% less efficiency); however, at high mass flow rates and reflux ratios the thermal efficiency of DPSAH is similar to that of a matrix-based upward recycling DPSAH, and in this way, not only the hot air demand is supplied, also the extra fan power cost and the cost of providing a suitable matrix are eliminated.
KW - UT-Hybrid-D
KW - Double pass solar air heater
KW - Matrix
KW - Upstream and downstream recycles
KW - Pressure drop
KW - Thermal and thermohydraulic efficiencies
U2 - 10.1016/j.tsep.2020.100789
DO - 10.1016/j.tsep.2020.100789
M3 - Article
VL - 21
JO - Thermal Science and Engineering Progress
JF - Thermal Science and Engineering Progress
SN - 2451-9049
M1 - 100789
ER -